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ABSTRACT 
 
 

The maximum-flow network-interdiction problem (MXFI) arises when an 

interdictor, using limited interdiction resources, wishes to restrict an adversary’s use of a 

capacitated network. 

MXFI is not easy to solve when converted to a binary integer program.  Derbes 

(1997) uses Lagrangian relaxation to solve the problem, at least approximately, for a single 

value of available resource, R.  Bingol (2001) extends this technique to solve MXFI 

approximately for all integer values of R in a specified range.  But, “problematic R-values” 

with substantial optimality gaps do arise.  We reduce optimality gaps in two ways.  First, 

we find the best Lagrangian multiplier for problematic R-values by following the slope of 

the Lagrangian function.  Secondly, we apply a limited-enumeration branch-and-bound 

algorithm. 

We test our algorithms on six different test networks with up to 402 nodes and 1826 

arcs.  The algorithms are coded in Java 1.3 and run on a 533 MHz Pentium III computer.  

The first technique takes at most 39.3 seconds for any problem, and for one instance, it 

solves 8 of the problem’s 15 problematic R-values.  For that problem, the second technique 

solves four of the remaining problematic R-values, but run time increases by two orders of 

magnitude. 
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EXECUTIVE SUMMARY 
 

This thesis is concerned with solving or approximately solving a maximum-flow 

network-interdiction problem (MXFI).  This problem arises when an interdictor, using 

limited interdiction resources, wishes to restrict an adversary’s use of a capacitated 

network.  In particular, the adversary, or “network user” seeks to maximize flow through 

the network, and the interdictor seeks to minimize that maximum flow by destroying arcs. 

MXFI is not easy to solve when converted to a binary integer program.  Derbes 

(1997) uses Lagrangian relaxation to attempt to solve this problem for a single value of 

interdiction resource, R.  Bingol (2001) extends this technique to solve MXFI for all integer 

values of R in some specified range assuming that exactly one unit of resource is required 

to interdict an arc.  However, about 25% of these values are “problematic” in tests, i.e., 

positive optimality gaps arise. 

In our study, we first focus on decreasing the optimality gaps by finding the best 

Lagrangian multiplier.  We simply follow the slope of the Lagrangian function to 

accomplish this.  For most test problems, this method decreases the gap for problematic R-

values by approximately 50%.  This method helps find better feasible solutions and 

sometimes prove optimality.  But, some large optimality gaps may remain. 

We tackle the remaining problematic R-values with a restricted branch-and-bound 

technique, which has only one level of enumeration below the root.  This technique creates 

a strict partition of the feasible region and the minimum lower bound from among these 

partitions is a lower bound on the optimal solution value.  In our tests, we solve 

approximately 70% of the problematic R-values that remain after applying the first 

technique.  However, branch-and-bound increases run times dramatically. 

Both procedures are written and compiled using the Java 1.3 programming 

language.  All tests are performed on a personal computer with a 533 MHz Pentium III 

processor and 192 MB of RAM, running under the Windows XP operating system. For test 

purposes, we have used 6 different grid networks.  The smallest one has 27 nodes and 86 

arcs and the largest one has 402 nodes and 1826 arcs.  



 xvi

Applying both techniques together, we have been able to either solve problematic 

R-values exactly or improve their optimality gaps for most cases.  In fact, 85% of the 

problematic R-values are solved optimally in our tests.  One problem with a large 

optimality gap does not improve, however.   
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I. INTRODUCTION  

This thesis develops a method based on Lagrangian relaxation to solve a maximum-

flow network-interdiction problem.  This problem arises when an interdictor, using limited 

interdiction resources, wishes to restrict an adversary’s use of a capacitated network.  In 

particular, the adversary, or “network user” seeks to maximize flow through the network, 

and the interdictor seeks to minimize that maximum flow by destroying arcs. 

The maximum-flow network-interdiction problem (MXFI), converted to an integer 

program, is difficult to solve because of an interdiction-resource constraint.  Derbes (1997) 

uses Lagrangian relaxation to move this constraint into the objective function, and is able 

to solve MXFI efficiently for certain resource levels R.  However, he solves for only one 

value of R at a time.  The goal of this thesis is to solve MXFI efficiently for all reasonable 

values of R in a single procedure. 

The underlying reasons that motivate us to obtain solutions for all values of R are:  

First, R may not be specified.  For instance, at an early stage of planning, we may not know 

how much resource will be available when the interdiction plan is to be carried out.  Thus, 

we would like to provide the decision-maker with solutions for all potential values of R.  

Secondly, decision-makers often like to have some input on the amount of resource to be 

expended.  This helps them review and maybe revise their decisions.  Finally, it is not 

much harder to solve MXFI for all reasonable values of R than for a single value. 

Derbes models the interdiction of arc k as requiring a small, integer amount of 

resource, kr  > 0.  For the sake of simplicity, we assume kr = 1 for all interdictable arcs k, 

although arcs may also be specified as non-interdictable.  Derbes also considers a dynamic 

version of MXFI in which flows require time to move through the network and interdicted 

arcs can be repaired over time.  The dynamic version of MXFI is beyond the scope of this 

thesis. 

Bingol (2001) investigates our version of MXFI and also attempts to solve for all R 

using a Lagrangian-relaxation procedure.  Essentially, he estimates the values of the 

Lagrangian functions for all R simultaneously.  He assumes that these functions only break 

at points at which the Lagrangian multiplier equals the capacity of some arc.  In carrying 
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out computations, he encounters some values of R for which his procedure cannot find an 

exact solution, so he develops a heuristic to handle these cases and determines associated 

optimality gaps.  He does not, however, optimize the Lagrangian-based lower bounds. 

In this thesis, we use a procedure similar to Bingol’s to find solutions for all values 

of R but will optimize the Lagrangian lower bounds as needed.  When significant 

optimality gaps are identified, we apply a restricted branch-and-bound procedure to 

improve the lower bounds and possibly identify better solutions.  This procedure is 

restricted to create enumeration trees having limited depth. 

A. BACKGROUND 

There are different types of network-interdiction problems. For instance, Israeli 

(1999) focuses on Maximizing the Shortest Path (MXSP) to slow a network user’s 

movement between two specified nodes in a network.  The k-most-vital-arcs problem is a 

special case of MXSP in which the interdictor seeks to destroy exactly k arcs to maximize 

the shortest path length.  Steinrauf (1991) designs a model to isolate a targeted demand 

node in a network.  Morton (2001) describes a stochastic network-interdiction model to 

help detect the smuggling of stolen nuclear materials.  However, in this thesis, we are only 

concerned with the deterministic maximum-flow network-interdiction problem, MXFI.  

The scientific literature on network interdiction begins with Wollmer (1966) who 

focuses on “Removing Arcs from a Network,” where the objective is to maximize the 

reduction of the flow between an origin and a destination node.  Later, Wollmer (1970) 

presents two algorithms for targeting strikes in an LOC (lines-of-communication) network 

attempting to make the network user’s costs as large as possible over time.  The LOC 

networks are described by a directed network, with arcs representing road, rail, or 

waterway segments.  The costs in his study include both flow costs in dollars, vehicle 

hours, manpower units, or any other appropriate measures; plus repair costs incurred by 

strikes, measured in similar units.  

McMasters and Mustin (1970) devise an algorithm to determine the optimum 

interdiction plan for minimizing network flow capacity when the minimum capacity on an 

arc is positive and the cost of interdiction is linear in the amount of arc capacity reduction. 
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Ratiff, Sicilia and Lubore (1975) show how to find a set of arcs, called “the N most 

vital links,” whose simultaneous removal from a single-commodity flow network results in 

the greatest decrease in the throughput capacity of the remaining system. 

Steinrauf (1991) develops two mathematical programs to determine strategies to 

interdict a network using limited resources.  The first model identifies a set of arcs whose 

interdiction minimizes the maximum flow through the network, constrained by the 

available resources. This is essentially MXFI.  The second model identifies a set of arcs to 

interdict that isolates a target node and the largest possible set of contiguous nodes.  The 

latter model can be used if the exact location of a target node is uncertain. 

Wood (1993) shows that the MXFI is NP-complete even if the interdiction of an arc 

requires exactly one unit of resource.  New, flexible integer-programming models are 

developed for the problem and a number of variants (partial arc interdiction, multiple 

sources and sinks, undirected networks, multiple resources, multiple commodities). Valid 

inequalities and a reformulation are derived to tighten the LP relaxations of some of these 

models.   

Cormican (1995) solves MXFI using Bender’s decomposition, which takes 

advantage of easy-to-solve network-flow subproblems.  Cormican et al. (1998) solve 

stochastic versions of MXFI where arc capacities and/or interdiction success may be 

uncertain.  Stochastic versions of MXFI are beyond the scope of this thesis, however. 

Whiteman (1999) discusses techniques for planning the interdiction of a complex 

infrastructure network to improve single-strike effectiveness.  The motivation for his work 

arises from the huge cost of modern weapons and delivery platforms and intolerance for 

casualties, and the consequential desire to minimize the number of subsequent attacks.  To 

optimize target selection, he modifies the integer program developed by Wood (1993), 

specifying different flow goals. 

Bingol (2001) extends the earlier work by Derbes (1997) on a Lagrangian-

relaxation technique to solve MXFI for all integer values of total interdiction resource, R, 

in some specified range.  His basic procedure solves MXFI exactly for most values of R, 

but “problematic values” of R arise with positive optimality gaps. 
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B. OUTLINE OF THESIS 

This chapter has provided background on network interdiction problems and has 

surveyed previous studies in this field.  The following chapter explains MXFI in detail, and 

develops the Lagrangian-relaxation technique for solving it, at least approximately.  In 

Chapter III, we first study the algorithms used by Derbes (1997) and Bingol (2001).  

Subsequently, we present two new procedures to improve optimality gaps for problematic 

R-values and sometimes even solve these problems exactly.  Chapter IV provides the 

computational results for the new procedures.  Finally, Chapter V provides conclusions and 

points out directions for further research.  
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II. FUNDAMENTALS OF NETWORK INTERDICTION 

This chapter first defines necessary concepts and notation for our study.  The 

notation is similar to that used by Wood (1993) and Bingol (2001).  The second part of the 

chapter starts with MXFI, which is a min-max model, and develops a minimizing integer-

programming formulation (MXFI-IP) and a Lagrangian relaxation (MXFI-LR) of that 

integer program. 

A. DEFINITIONS AND NOTATION 

G = (N, A) denotes a directed network with node set N and arc set A.  An arc k = (i, 

j) starts from “tail node” i and ends at “head node” j.  Each arc k has a capacity uk > 0.  The 

network has a source node s and a sink node t.  For mathematical purposes, we add to A the 

artificial arc  ( , )a t s=  with au = ∞ .  The forward star of node i, FS(i), includes all arcs of 

the form (i, j).  The reverse star of node i, RS(i), represents all arcs of the form (j, i). 

In this study, only arc interdiction is allowed.  In the test networks, rk is the amount 

of interdiction resource necessary to destroy arc k.  For simplicity, we assume rk = 1 or  rk 

= ∞; the latter case simply means the arc cannot be interdicted. 

A cut (Ns, Nt) partitions the node set N into two subsets, Ns and Nt where s ∈  Ns and 

t ∈  Nt.  An arc (i, j) is a forward arc of cut (Ns, Nt) if i ∈  Ns  and j ∈  Nt.    

AC represents the set of forward arcs for cut (Ns, Nt).  The capacity of a cut, u(Ns, 

Nt), is the sum of the capacities of the forward arcs in that cut: 

u(Ns, Nt)= ∑
∈ CAk

ku . 

If u(Ns, Nt) is the minimum of all cut capacities, then ( , )s tN N  is a minimum cut.  

We know by the maximum-flow minimum-cut theorem that the capacity of the minimum 

cut equals the maximum s-t flow in that network; the maximum flow model will be 

described shortly. 
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B. NETWORK INTERDICTION MODEL 

Here, we define the basic MXFI, which is then converted into MXFI-IP.  

Lagrangian relaxation for MXFI-IP is presented subsequently.   

 

1. Maximum Flow Network Interdiction Problem (MXFI) 
In MXFI, an interdictor, using limited interdiction resources, destroys arcs of the 

enemy’s network G= (N, A) and makes them useless.  The objective is to minimize the 

maximum amount of flow that the enemy, i.e., the network user, can transport through the 

network. We define MXFI as a function of total interdiction resource R: 

 

MXFI(R): 

Indices: 

i, j ∈  N nodes of network G=(N,A) 

s ∈  N source node 

t ∈  N sink node 

k = (i, j) ∈A network arcs 

a = (t, s) ∈A artificial return arc included in A 

Data: 

 uk  nominal, uninterdicted capacity of arc k   

 rk amount of resource necessary to interdict arc k  (ra = ∞) 

 R  total amount of available resource 

Decision Variables:  

yk  amount of flow on arc k (network user) 

 xk 1 if interdiction of arc k is attempted (interdictor) 

  0 otherwise 
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Formulation: 

   ( ) min max aX
z R y

∈
=

x y
   

  s.t. 0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy  ∀i ∈ N                                       (1) 

  )1(0 kkk xuy −≤≤            ∀k ∈ A                                       (2) 

                       { }where 0,1 , 0A
k k a

k A
X r x R x

∈

 = ∈ ≤ ≡ 
 

∑x .  (3) 

In this model, constraints (2) force capacities down to zero for all interdicted arcs.  

For fixed x, the inner maximizing problem is a standard maximum-flow model, which 

maximizes the flow from a source node to a sink node subject to flow-balance constraints 

(1) and arc capacities (2).  MXFI(R) can also be reformulated as MXFIR(R) (Cormican et 

al. 1998): 

 

MXFIR(R): 

( ) min max a k kX k A
z R y x y

∈
∈

= −∑x y
 

 s.t. 0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy        ∀i ∈ N   

                kk uy ≤≤0               ∀k ∈ A           

  { }where 0,1 , 0A
k k a

k A
X r x R x

∈

 = ∈ ≤ ≡ 
 

∑x . 

 

2. An Integer Program for MXFI (MXFI-IP) 
Taking the dual of the inner maximization of MXFIR gives us a linear minimization 

model (which is derived by Wood 1993 directly from MXFI): 
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MXFI-IP(R) 

Indices: As in MXFI 

Data:  As in MXFI 

Decision Variables: 

 αi     1 if  i ∈  Nt  and 0 if  i ∈  Ns, for a model-identified cut (Ns,Nt) 

 βk             if k is a forward arc of cut (Ns,Nt) and not interdicted, 0 otherwise 

 xk 1 if interdiction of arc k is interdicted, 0 otherwise (interdictor) 

 

Formulation: 

 
, ,

( ) min k k
k A

z R u β
∈

= ∑α β x
 

 s.t. 0≥++− kkji x βαα  ∀k = (i,j) ∈ A –{a}  (4) 

  1≥++− aast x βαα         for a = (t, s) (5) 

  Rxr k
Ak

k ≤∑
∈

                                                           (6) 

   αi ∈ {0,1}   ∀i ∈ N                  

   xk , βk  ∈ {0,1}     ∀k ∈ A         

   αs  ≡ 0, αt  ≡ 1    

  βa ≡ xa ≡ 0     

                                   

3. Lagrangian Relaxation for MXFI (MXFI-LR) 

Lagrangian relaxation is a general solution strategy for solving mathematical 

programs that permits us to decompose problems to exploit their structure.  This solution 

approach leads to bounds on the optimal objective function value and, frequently, to good, 

though not necessarily optimal solutions (Ahuja, Magnanti and Orlin 1993, p. 601). 
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MXFI-IP can be difficult to solve because of constraint (6), so we transfer this 

constraint into the objection function following Derbes (1997).  After this modification, the 

new model, MXFI-LR, can be easily solved, although it may not always yield an optimal 

solution.  The model is: 

 

MXFI-LR (λ , R): 

 
, ,

( , ) min ( )
α β x k k k k

k A k A
z R u r x Rλ β λ

∈ ∈

= + −∑ ∑        (7)                                    

  s.t. 0≥++− kkji x βαα         ∀k = (i,j) ∈ A – {a}           

   1≥++− aast x βαα           for a = (t, s) 

            αi ∈ {0,1}      ∀i ∈ N                  

  xk , βk  ∈ {0,1}     ∀k ∈ A         

   αs  ≡ 0, αt  ≡ 1    

  βa ≡ xa ≡ 0  

The term )( Rxr k
Ak

k −∑
∈

λ  represents a penalty for exceeding or a reward for not consuming 

the resource budget R.  The parameter λ  can be interpreted as the dual cost of interdicting 

an arc.   

The linear-programming relaxation of MXFIR has integer extreme points, so we 

can take the dual of that relaxation to obtain MXFI-LRD after some simplifications 

(Derbes 1997):  

 

MXFI-LRD (λ , R): 

 RyRz a λλ −=
y

max),(  

 s.t. 0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy  ∀i ∈ N 
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  },min{0 kkk ruy λ≤≤  ∀k ∈ A           

 

 Of course, z(λ,R) is only a lower bound on z(R), but we can use this lower bound, 

and interdiction plans obtained during its solution to solve MXFI(R), at least 

approximately.  Procedures to do this are presented in the next chapter. 
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III.   NETWORK INTERDICTION BY LAGRANGIAN RELAXATION 
AND BRANCH-AND-BOUND  

This chapter explains our algorithm for solving MXFI.  The algorithm uses MXFI-

LRD as Bingol (2001) does, but adds two new procedures to decrease optimality gaps.  The 

first procedure finds optimal Lagrangian multipliers, which Bingol’s approach does not do.  

The second procedure implements a restricted version of branch-and-bound.  “LRD” and 

“MXFI-LRD” are used interchangeably below.   

A. PRELIMINARIES 

Derbes (1997) shows that Lagrangian relaxation can fail to solve MXFI(R) when 

capacities are not unique, but may solve the problem correctly if the capacities are 

perturbed slightly so as to be unique. We use the procedure suggested by Bingol (2001) to 

guarantee unique capacities: 

 Procedure Perturb(u): 

{ 
 Order ku  so that 1u  ≤ 2u ≤ ··· ≤ u|A| ; 

 For (k and m such that 1−ku < ku  = 1+ku = ··· = mku + < 1++mku ){ 

 ku ← 104 uk; 

 1ku + ← 104 uk + 1; 
 . 
 . 
 . 

 k mu + ← 104 uk + m − 1; 
} 
Return u; 

} 
 

So, suppose that u = (1, 1, 3, 3, 3).  After running this procedure, the network has 

unique arc capacities, u = (10000, 10001, 30000, 30001, 30002).  These small perturbations 

are unlikely to change the optimal solutions to MXFI.  (A scaling factor larger than 104 

would have to be used if the network were very large and there were many arcs with 
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identical original capacities.)  The use of this procedure is assumed and not shown 

explicitly below. 

B. THE LAGRANGIAN-RELAXATION MODEL  

 The function ),( Rz λ , from MXFI-LRD ),( Rλ , is a piecewise-linear concave 

function in λ  for fixed R.  Since LRD ( , )Rλ  relaxes MXFI-IP(R), ( , ) ( )z R z Rλ ≤  for all 

λ , where ( )z R is the optimal solution for MXFI-IP(R).  Naturally, we wish to maximize 

( , )z Rλ overλ . 

Given a fixed λ , we can solve, or attempt to solve, MXFI(R) and obtain the 

interdiction set ( )IA λ , for an unspecified R, through LRD ( , )Rλ as follows (Bingol 2001): 

1. Modify ( , )G N A=  such that arc capacities become min{ , }k k ku u rλ′ =  k A∀ ∈ , 

and use a max-flow algorithm to find a minimum-capacity cut CA , 

2. Define the interdiction set ( )IA λ = {k ∈ CA  | k ku rλ≥ }. 

The solution found through LRD ( , )Rλ  identifies a minimum cut ( , )s tN N that 

corresponds to a feasible or infeasible solution x̂  to MXFI(R), where ˆ 1kx =  ( )Ik A λ∀ ∈ , 

and ˆ 0kx =  otherwise.  If x̂  satisifies the budget constraint ˆk k
k A

r x R
∈

≤∑ , then it is a feasible 

solution.  By solving LRD ( , )Rλ for several values of λ , we may be able to find x̂ , 

with ˆk k
k A

r x R
∈

=∑ .  (Intuitively, this seems more likely to occur at kuλ = which is why 

Bingol only evaluates such values of λ.)  In this case, MXFI(R) is solved exactly.  If not, 

we will establish a non-zero optimality gap.   

To determine optimality gaps, we need upper and lower bounds on ( )z R .  For a 

feasible interdiction set ( )IA λ , the corresponding maximum flow is an upper bound (UB);  

( , )z Rλ from LRD is a lower bound (LB) for ( )z R  for anyλ ; the best LB from the 

Lagrangian relaxation is found by solving max ( , )z R
λ

λ . 

Derbes (1997) uses a binary search on the interval of uncertainty forλ  to maximize 

( , )z Rλ .  His algorithm, when specialized for our version of MXFI(R), is: 
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Algorithm D(R): 

Input:   G= (N, A)  directed network with source s∈N and sink  t∈N; arcs indexed by k, 

  ku    unique, scaled-up integer arc capacities ku  > 0 , ∀k  ∈  A, 

  rk   rk = 1 for all interdictable arcs k ∈  A; kr = ∞  otherwise, 

  R  total interdiction resource available. 

Output:  LB  lower bound for the network interdiction problem given R; 

 

{ 

 Initialize: LB ←−∞ ; max max 1uλ ← + ; min min 1uλ ← − ; maxλ λ← ; 

 while ( max min 1λ λ− ≥  ) { 

   { }min ,k k ku u rλ′ ←  for all Ak ∈ ;  /* adjust arc capacities */ 

   /* maxFlow( ) below returns a min cut CA  and max flow value f  */  

  (AC, f ) ← maxFlow (G, s, t, ′u ); 

   AI ← {k ∈ AC | ku′ =  λ }; 

   max{ , }LB LB f Rλ← − ; 

   if (| | )IA R= { break; } /* from while loop */  

   if (| | )IA R<  { maxλ λ← ; }  

   if (| | )IA R>  { minλ λ← ; }  

   min max( ) / 2λ λ λ= + ; 

  } 

  print (“ LB for R =”, R, “is”, LB); 

} 

 

In Algorithm D(R), the interval of uncertainty initially has left endpoint 

min min 1uλ = −  and right endpoint max max 1uλ = + .  For max min( ) / 2λ λ λ= + , a max-flow 

problem is solved in ( , )G N A=  with max{ , }k k ku u rλ′ =  and IA  is determined.  The 

endpoints of the interval are adjusted by determining the sign of the slope of ( , )z Rλ  which 
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is ˆsgn( )k k
k

r x R−∑ :  If | |IA R< , λ  becomes the right endpoint, maxλ , of the interval.  If 

| |IA R> , then λ  becomes the left endpoint, minλ , of the interval.  If | |IA R= , then 

MXFI(R) has been solved optimally.  If an optimal solution to MXFI(R) is not found, this 

process goes on until λ̂  is found such that min max
ˆλ λ λ≤ ≤  and max min 1λ λ− < .  This λ̂  is 

close enough to *λ , because the arc capacities have been scaled up by a large 

multiplicative factor.  (See Section A of this chapter.) 

With this procedure we can obtain a solution for only a single value of R.  But, we 

are interested in solving MXFI(R) for all “reasonable” values of R, which means 

min[0,| |]R A∈ , where Amin is a minimum-cardinality cut consisting of only interdictable 

arcs.  (We assume such a cut exists.)  In other words, |Amin| is the minimum resource level 

that guarantees a feasible interdiction plan can force the network flow to zero. 

Performing a binary search for each min[0,| |]R A∈  seems inefficient.  This is 

especially true because ),( Rz λ and ( , )z Rλ ′  are closely related: 

( , ) ( , ) ( )z R z R R Rλ λ λ′ ′= + − . 

Furthermore, ( , ) ( ,0)z R z Rλ λ λ= −  where ( ,0)z λ  is simply the maximum flow ( )f λ  in 

( , )G N A=  with arc capacities max{ , }k k ku u rλ′ = k A∀ ∈ .   

Bingol (2001) attempts to solve MXFI(R) for all (reasonable) values of R by 

approximately solving LRD ( , )Rλ .  He considers λ  in the range max[0, ]u  and assumes the 

slope of ( , ) ( )z R f Rλ λ λ= −  can change only at kuλ = .  That is, he assumes that ( )IA λ  

changes only in going from kuλ ε= −  to kuλ ε= +  for certain ku  and some small 0ε > .  

With this assumption, he can solve many instances of MXFI(R) with acceptable accuracy 

by only evaluating ( , )z Rλ  at such points.  Bingol’s algorithm is given next.  The routine 

ProblematicRn() initially represents Bingol’s procedure ProblematicR1() for handling 

problematic R-values.  That will be replaced subsequently with our routine, 

ProblematicR2(), to improve results.  
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Algorithm A: Attempts to solve MXFI(R) for each value of min[0,| |]R A∈  by computing 

( , )z Rλ  for 1 2 | |, , , Au u uλ = …  and determining a feasible interdiction set ( )R
IA   

Input:   G= (N, A)  directed network with source s∈N and sink  t∈N; arcs indexed by k 

  ku    unique, scaled up integer arc capacities ku  > 0 , ∀k  ∈  A,  

   rk   rk = 1 for all interdictable arcs k ∈  A; kr = ∞  otherwise. 

Output:  ˆ( )Rx   optimal or suboptimal solution for MXFI(R), 

  ( )R
IA    interdiction set ∀ R ∈  [0, |Amin|] that corresponds to ˆ( )Rx , 

 z(R)   for non-problematic R: optimal objective function value to MXFI(R), 

 UB(R)   for problematic R: feasible objective value, 

 LB(R)   for problematic R: lower bound on optimal objective value, 

 absGap(R) for problematic R: absolute optimality gap UB(R) − LB(R), 

 relGap(R) for problematic R: relative optimality gap 100×absGap(R)/LB(R). 
 

{ 

 /* define and order the candidate set of λ values */ 

 Reorder arcs so that 1 2 | |Au u u< < ⋅⋅ ⋅ < ; 

Initialize: | | 1; | | 1; 0; 0; 0; 1;R A R A f f lλ′ ′ ′← + ← + ← ← ← ←   

while ( l  ≤  | A | and R ≠ 0){ 

  λ  ← lu ; 

  { }min ,k k ku u rλ′ ←  for all Ak ∈ ;  /* adjust arc capacities */ 

  (AC, f ) ← maxFlow (G, s, t, ′u ); 

  AI ← {k ∈ AC | ku′ =  λ }; 

  ˆ ˆ1 ; 0 \ ;k I k Ix k A x k A A← ∀ ∈ ← ∀ ∈  

  R ← | AI |; 

  z ← f −  λ R; 

/* ProblematicR1() is called by Bingol; we will call ProblematicR2() */ 

  if (R′ − R > 1 ){ ProblematicRn( , , , , , , IR R f f Aλ λ′ ′ ′ ′ ); } 

  if ( )R R′≠ { 
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   print (“ The optimal solution to MXFI(R) for R = ”, R, “is ”);  

   print  ( x̂ , AI, z) ; 

  } 

  /* In the following case, we know that MXFI(R−1) will be solved by  

   evaluating ( , 1)z Rλ ε+ −  for a small 0ε >  */ 

  if ( ku λ′ =  for some k′ ∈ AI ){  

   AI ← AI − {k′}; 

   R ← R − 1; 

   z ← z + ku ′  ; 

   ˆ 0;kx ′ ←  

    print (“ The optimal solution to MXFI(R) for R = ”, R, “is ”);  

    print  ( x̂ , AI, z) ; 

  } 

  if ( )R R′ ≠  { 

   RR ←′ ;   λ λ′← ;   I IA A′ ← ;   f ′←f;   z′ ← z; 

  } 

  1+← ll ; 

 } 

} 

 

Algorithm A orders arcs by increasing capacity 1 2 | |Au u u< < ⋅⋅ ⋅ <  and starts with 

1uλ = .   Because all arc capacities are λ , I CA A≡ , which corresponds to a post-

interdiction flow of zero.  This effectively defines the solution 1ˆ ( )rx  to MXFI 1( )r , where 1r  

is the number of arcs in a minimum-cardinality cut consisting of only interdictable arcs.  If 

ku λ′ =  for some k′ ∈ AI, we also find a solution to MXFI( 1 1r − ).  If not, the next iteration 

sets  λ  to 2u  and attempts to find a solution 2ˆ ( )rx  to MXFI( 2r ) such that 2 1r r< .  If 

2 1 1r r= − , the algorithm continues without need of ProblematicRn(), and repeats for 

increasing values of kuλ = . 
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When we compute | |IR A= , we know that we solve *max ( ,| |) ( , )I Rz A z R
λ

λ λ= , 

i.e., we maximize the Lagrangian function ( , )z Rλ  for | |IR A= .  Furthermore, since 

ˆk k
k A

r x R
∈

=∑ , *( , ) ( )Rz R z Rλ = ; therefore we have solved MXFI(R).  However, difficulties 

arise when the algorithm finds *( , ) ( )Rz R z Rλ =  and *( , ) ( )Rz R z Rλ ′ ′ ′=  for 1R R′ > + , but 

not for 1, 2,..., 1.R R R′+ + −   We call these “missing” or “problematic R-values.”  For 

problematic R-values, Bingol (2001) derives a heuristic, ProblematicR1() to find a feasible 

solution and lower bound LB on *( , )Rz Rλ .  The feasible solution gives an upper bound UB 

for ( )z R , so he can compute an absolute, or relative  optimality gap which are defined as 

absGap=UB−LB and relGap= 100 ×  absGap/LB, respectively.   

 

Procedure ProblematicR1 ( , , , , , , IR R f f Aλ λ′ ′ ′ ′ ) 
Input: R  current R-value correctly solved,  

R′  previous R-value correctly solved (R′ > R + 1), 
λ  value of parameter that maximized z(λ,R) to solve MXFI(R), 
λ′  value of parameter that maximized z(λ,R′) to solve MXFI(R′), 
f  maximum flow f(λ), 
f ′  maximum flow ( )f λ′ , 

IA′  interdiction set for MXFI( R′ ). 

Output:  ˆ ( )Rx   feasible (possibly optimal) solution for MXFI(R), 
  ( )R

IA    interdiction set that corresponds to ˆ ( )Rx , 
 UB(R)   feasible objective value for ˆ ( )Rx , 
 LB(R)   lower bound on optimal objective value z(R), 
 absGap(R) absolute optimality gap UB(R) − LB(R) for ˆ ( )Rx , 
 relGap(R) relative optimality gap 100×absGap(R)/LB(R) ) for ˆ ( )Rx . 

 
 
{ 
 Initialize: UB ← f Rλ′ ′− ; I IA A′← ;  
  for ( r = R′ − 1 down to R + 1 ){ 

 kmin ← argmin
I

k
k A

u
′∈

; 

 LB ←max{ f − λr, f ′− λ′r };   
      UB ← UB + 

minku ; 
   absGap ← UB − LB; 
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   relGap   ← 100×absGap/LB; 
      minI IA A k← −  ; 
 ˆ ˆ1 ; 0 \ ;k I k Ix k A x k A A← ∀ ∈ ← ∀ ∈  

                   print (“ For problematic R  = ”, r, “the approximate soln. to MXFI(R) is: ”); 
                   print ( x̂ , IA ,UB, LB, absGap, relGap ); 
 } 
} 

 

Algorithm A requires the solution of a sequence of maximum-flow problems.  We 

use the shortest augmenting path max-flow procedure, maxFlow(), (Edmonds and Karp 

1972), which finds the maximum flow f, and a minimum-capacity cut AC.  Since the flow 

on each arc is non-decreasing, this procedure uses the previous flow level from the last 

iteration, instead of starting from scratch.  This is important for fast run-times. 

C. FINDING AN OPTIMAL λ  FOR PROBLEMATIC R  

The procedure ProblematicR1() above does not find the best LB, i.e., it does not 

maximize z(λ,R) for problematic R-values and therefore does not establish the best 

achievable optimality gap.  We can attempt to find the best lower bound by exploring the 

region [ , ]R Rλ λ′  by defining a finer grid for λ .  But this is computationally expensive and 

requires solving many max-flow problems.  At this point, Proposition 1 expedites the 

process. 

Proposition 1 (Derbes 1997):  The Lagrangian function ),( Rz λ  has a slope of 

| ( ) |IA Rλ − ,  where  | ( ) |IA λ  is the number of arcs interdicted using λ .  
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Figure 1.   NETSample.  Letters and numbers represent arc labels and capacities, respectively.  
Unlabeled arcs cannot be interdicted.  All labeled arcs have 1kr = . 

 

Figure 1 shows a sample network, NETSample, which we will use to explain 

Proposition 1.  We will compute ( ,1)z λ and look at the function in detail: 
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Figure 2.   Lagrangian function for ( ,1)z λ for NETSample.  The first number in parentheses is the 
value of parameter λ  and the second number represents the value of the function. 

 

If we compute the slope mBC of line BC  in Figure 2, we see that BCm  = | ( ) |IA Rλ −  

= 3 −1 = 2.  Likewise, | ( ) | 1 1 0CD Im A Rλ= − = − = , which also gives us the optimal 
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solution for 1R = . (When the slope is zero, | ( ) | 1IA Rλ = = , and we obtain an exact 

solution for MXFI(1).)  These results are in accordance with Proposition 1. 

For NETSample, if we run Algorithm A, we run into a missing value of R.  We find 

a solution for 3R =  at 3 3λ =  and 1R =  at 1 7λ = , but not for 2R = .  The solutions for 

3R =  and 1R =  are  (3)
IA  = {a, b, c} and (1)

IA  = {e}.  Bingol’s heuristic finds the UB and 

LB for 2R = , with the following steps:  

 
i.   (2)

IA  = (3)
IA –{kmin} = { , , } { } { , }a b c c a b− = , 

 
ii.  UB = z(3) +  umin = 1 + 7 = 8,  
 
iii. LB = max }2)(,2)({ 3311 λλλλ −− ff = max {19 – 14, 10 6− } = 5, 
 
iv. absGap = 8 – 5 = 3, 
 
v. relGap = 100 ×  3 / 5 = 60%. 
 

The relative gap, relGap, is quite high.  To reduce this optimality gap, we exploit 

Proposition 1 and trace the function ( , )z Rλ  more closely. 
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Figure 3.   Lagrangian Function of R = 2 for NETSample.  The solid line denotes that the value of the 
function is computed for those λ  values.  The dotted line shows how procedure 
solveExact() computes the optimal λ . 

 
 

ProblematicR1() finds LB = 5 for R = 2, which is the value of the function at point 

E.  But with Proposition 1, we can look for *
2λ  over the region [3, 7] to improve LB and 

possibly solve MXFI.   If ( ) 2I DA λ =  (it is not in this case), then MXFI(2) is solved 

exactly.  Otherwise, we obtain an improved LB.  To accomplish this, we do the following: 

 
i. /* Find the slopes of associated lines  */ 

CDm  = | (3) |IA  – R = 3 – 2 = 1, DEm  = | (7) |IA  – R = 1 2−  = – 1, 
 
ii.  /* *

2λ  is the optimal parameter value for R =2 */ 
z( *

2λ ,2) =4 + (1)( *
2λ – 3), z ( *

2λ ,2) = 5 + ( 1− )( *
2λ – 7), 

 
iii.  /* Compute *

2λ   from the equations above */ 
*
2λ = 5.5 and  z ( *

2λ ,2) = 6.5, 
 
iv. /* Check for optimality */ 

(5.5) 2IA ≠ ,   /* MXFI(2) is not solved exactly */ 
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v. /* Compute the optimality gap with the new LB */ 
absGap = *

2( , 2)UB z λ− = 8 – 6.5 = 1.5,  and 
relGap = *

2100 / ( , 2)absGap z λ× = 100 ×1.5 / 6.5 = 23.1%. 
 
 

The relative gap has decreased from 60% to 23.1%.  The best Lagrangian multiplier 

is *
2λ =5.5.  Because Algorithm A computes ( , )z Rλ  at ku k Aλ = ∀ ∈ , it would never 

discover this LB. This example has only one missing R-value.  However, there can be 

contiguous problematic R-values.  The following procedure will also handle these cases.   

 
Procedure ProblematicR2( , , , , , , IR R f f Aλ λ′ ′ ′ ′ ): 
 
Input: R current R-value correctly solved , 
 R′ previous R-value correctly solved (R′ > R + 1), 

 λ  value of parameter at which R  is solved, 
 λ′  value of parameter at which R′  is solved, 

 f maximum flow f(λ ), 
 f ′  maximum flow f(λ′ ). 
 

Output:  ˆ ( )Rx   optimal or suboptimal solution for MXFI(R), 

  ( )R
IA    interdiction set ∀ R ∈  [0, |Amin|] that corresponds to ˆ ( )Rx , 

  z(R)   for non-problematic R: optimal objective function value to MXFI(R), 

 UB(R)   for problematic R: feasible objective value, 

 LB(R)   for problematic R: lower bound on optimal objective value, 

 absGap(R) for problematic R: absolute optimality gap UB(R) − LB(R), 

 relGap(R) for problematic R: relative optimality gap 100×absGap(R)/LB(R). 
{ 

For (r = R′ −1 to R+1) { 

 point ← λ ; prevPoint  ← λ′ ;  prevR R′←  ; curR R′← ;    

 if ( 1r R= + ){ curR R← ;} 

 while (point ≠  prevPoint) {  

 prevPoint ← point;  

point ← ( ) /( )f f R R R Rλ λ′ ′ ′ ′− − + − ; /* see the explanation below */ 

  min{ ,k ku u′ ← (point) kr }   for all k ∈  A; 
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  (AC , flow) ← maxFlow(G, s, t, ′u ); 

  AI ← { |C kk A u λ′∈ = }; 

  ˆ ˆ1 ; 0 \ ;k I k Ix k A x k A A← ∀ ∈ ← ∀ ∈  

 /* If the exact solution is found, then it prints the results */ 

if  (| | )IA r=  {  
    print (“ The optimal solution to MXFI(R) for R = ”, R, “is ”);  

    print  ( x̂ , AI, z) ; 

   prevPoint ← point ; /*get out of while loop */ 

   curR r← ; 

  if ( 1prev curR R− = ) { prev curR R← ; } 

 }        

  if ( | |IA r> ) {  λ′  ← point ;  R′  ← | |IA ;  f ′  ← flow;  I IA A′ ← ; } 

  if ( | |IA r< ) { λ ← point ;  R ← | | ;IA   f  ← flow;} 

 } 

 
*
rλ  ← point ; /* The best Lagrangian multiplier is found */ 

 if ( 1)prev curR R− > { 

  /* With revised values of λ  and λ′ , we can reuse ProblematicR1() to 

   find a feasible solution and optimality gap for missing values of R  */ 

  ProblematicR1( ( ), , , , , , prevR
prev cur IR R f f Aλ λ′ ′ );  

  /* Uncomment the next statement to invoke Branch() .  Notice that UB(R) 
comes from  ProblematicR1()  */ 

  /* Branch( prevR , curR , *
1rλ ε+ − , ( )prevR

IA , UB(R)); */ 

  prev curR R← ; 

 } 

  } 

 } 
 

In our heuristic above, we derive the formula point = ( ) /( )f f R R R Rλ λ′ ′ ′ ′− − + −  

in order to find the intersection with the following steps: 
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1. /* Find ( , )z point r  using the previous solution’s parameters ( , ,R fλ′ ′ ′ ).  

Notice that r is the missing value and slope is R r′ −   */ 

( , ) ( ) ( )( )z point r f r R r pointλ λ′ ′ ′ ′= − + − − , 

2. /* Find ( , )z point r  using the current solution’s parameters ( , ,R fλ ).   This 

time, slope is r R−  */ 

( , ) ( ) ( )( )z point r f r r R pointλ λ= − + − − , 

3. /* Using these two equations, solve for “point” */ 

( ) /( )point f f R R R Rλ λ′ ′ ′ ′= − − + − . 

When Algorithm A runs into one or more problematic R-values, ProblematicR2() is 

called to find the best Lagrangian multiplier for each missing value of R. This heuristic 

seeks *
Rλ  over an interval of uncertainty by performing a binary search based on the sign of 

slope ∑ − Rxr kk ˆ .  First, it finds the intersection, point, using the formula derived earlier.  

If ( )IA point r= , then MXFI(r) is solved exactly.  Otherwise, it updates the endpoints as in 

Derbes’s procedure (1997).  It keeps updating until it converges to *
Rλ  and possibly finds 

an exact solution.  If there are multiple values of [ 1, 1]prev curR R R∈ − + , ProblematicR1() is 

invoked to improve the results with the best Lagrangian multipliers for each of these 

problematic R-values.  For further improvements, we can a invoke Branch() which applies 

a restricted branch-and-bound procedure. 

If there is only one missing R-value, one of two cases occurs, and it only takes one 

evaluation of z(λ,R) to figure this out: 

1. If there is only a single breakpoint, then we must compute it exactly when 

we compute the intersection of the two lines extending upwards from the coordinates 

( Rλ ′ , ( , )Rz Rλ ′ ′ )  and ( Rλ , ( , )Rz Rλ ) in (λ , z)-space.  Let that intersection point be (λ′′ , z′′ ).  

The single breakpoint is verified by computing ( , )z Rλ′′  and finding ( , )z z Rλ′′ ′′=  .   

2. If there are two breakpoints in the interval ( , )R Rλ λ′ , we compute (λ′′ , z′′), 

evaluate ( , )z Rλ′′ and find that ( , )z R zλ′′ ′′< .  Consequently, the slope of the ( , )z Rλ curve 
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must lie strictly between one and negative one.  Since the slope can only change by integer 

amounts, we have found a portion of the curve where the slope is zero and will, 

consequently, have solved MXFI(R) optimally. 

If there are sequential problematic R-values, there are three possibilities: 

1. There may not be an exact solution for any of the problematic R-values.  In 

this case, the procedure finds *
Rλ  and then ProblematicR1() is called with updated 

parameters to find the best LB.  In fact, λ  and λ′  computed earlier by Algorithm A are at 

some ku .  However, when computed by ProblematicR2(), either λ  or λ′  becomes the best 

Lagrangian multiplier, which helps improve LB for these problematic R-values.  To invoke 

Branch(), we use the following idea: When there are more than one problematic R-values at 

one breakpoint, the best Lagrangian multiplier is the same for all these values.  In other 

words, for [ 1, 1]R R R′∈ − + , * * *
1 2 1R R Rλ λ λ+ + −= = = .  Therefore, we use only one of them 

with a slight perturbation, *
1rλ ε+ − , to invoke Branch(), where *

1| ( ) |I r prevA R Rλ ε+ ′− = = .   

2. The interval of uncertainty might yield an exact solution for some of the 

problematic R-values. If it does, then the procedure prints out the results of those values, 

and prevR  and curR  establish new endpoints for the problematic R-values.  If 1prev curR R− > , 

ProblematicR1() and/or Branch() can be invoked to find a feasible solution and optimality 

gap for problematic [ 1, 1]cur prevR R R∈ + −  as explained in the previous paragraph.  Since 

( )prevR
IA  and/or ( )curR

IA  might change for the problematic [ 1, 1]cur prevR R R∈ + − , not only LB 

but also UB are computed by ProblematicR1().   

3. The procedure might solve MXFI(R) exactly for all missing R-values in the 

sequence. In our tests in Chapter IV, we observe this in two instances out of 10 test 

problems. 

D. RESTRICTED BRANCH-AND-BOUND  

Using procedure ProblematicR2() to solve MXFI, we may be able to reduce the 

optimality gap by a substantial amount or solve MXFI exactly, for certain values of R.  
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However, there might be some problematic R-values for which the optimality gap is still 

large.  For these R-values, we can resort to branch-and-bound. 

The usual idea of the branch-and-bound in the setting of integer programming is the 

following:  Assume that we have a feasible, binary integer-programming problem (BIP). 

We can solve the BIP as a linear program (LP) (i.e., the linear-programming relaxation of 

BIP) by ignoring the integer restrictions.  If the LP optimal solution contains only binary-

valued variables we have solved the BIP.  Otherwise, we select a fractional variable, say 

kx , and branch on it.  That is, we create two new LPs, LP1 and LP2, by introducing the 

constraints 0kx =  and 1kx = , respectively.  An optimal solution to the original problem is 

contained in the feasible region to at least one of these two problems.  Next, we select one 

of the problems, say LP1, solve it (the LP relaxation that is), and evaluate its objective.  If 

the objective is no better than the value of some incumbent integer solution (which we 

obtained heuristically, say), then that problem is fathomed by bounds.  If the problem is 

infeasible, it is fathomed by infeasibility.  If the solution is integer  then we have fathomed 

by integrality (and we save this solution as the incumbent if it is better than any we have 

seen before).  If none of those cases occur for LP1, we select a fractional variable and 

recursively branch on it.  Branch and bound stops when all nodes are fathomed:  The best 

solution found is optimal.  (Note that some subproblems that have not been solved may be 

fathomed using information from other subproblem solutions.  For instance, if an optimal 

integer solution to LP1 is found and its objective value equals that of LP, then LP2 is 

implicitly fathomed by bounding.) 

But in our scheme for solving MXFI, there are no fractional values.  Thus, we need 

a different partitioning scheme.  We will base the partition on, essentially, setting 0=kx  or 

1=kx  for ( )Ik A λ′∈ , where ( )IA Rλ′ > .  In this case, “forcing arc k into the solution” is 

equivalent to setting 1=kx  and “forcing arc k out of the solution” corresponds to setting 

0=kx .  And, we will consider a node fathomed if, at that node: 

1. | |IA R=  (equivalent to being fathomed by integrality; an optimal solution to 

the subproblem has been found), and 
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2. ( , )z R UBλ > . (Fathomed by bounding.) 

 If we use this technique in our problem, our enumeration tree might look like the 

following, given ( )IA λ′ = {m, n, r} : 

 

           

 

                                          

  

 

  

 

Figure 4.   Sample Enumeration Tree for R = 1.  Solutions are given next to nodes in curly braces and 
the branching decision is next to the branches: “  The initial solution at the root node at 
level 0 is {m, n, r}. “ m ” and “m” represent the exclusion and inclusion of arc m, 
respectively.  Note that none of the nodes are fathomed in this sample enumeration tree. 

 

In Figure 4, every time we force an arc in, we obtain the same solution.  For 

example, when arc m is included for the solution at Level 1, we get the solution {m, n, r} 

from Level 0.  But, it is unnecessary to consider a branch with {m, n, r}, because we have 

already evaluated this solution.  So, we modify the procedure as follows: 

  

v  v  n

mm  

{ , , }m n r  { , }v y  

{ , , }m n r (Level 0) 

(Level 1) 

(Level 2) 

n
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Figure 5.   Modified Enumeration Tree for R = 1.  Solutions are represented next to nodes in {}.  nm  
represents the inclusion of arc m and exclusion of arc n.  A full partition of the space of all 
possible solutions includes {m, n, r}, but this branch need not be created, because this 
solution has already been evaluated at the root level of enumeration tree. 

In this modified enumeration tree, we begin with the exclusion of the first arc m in 

the initial interdiction set and we obtain the solution },{ yv  as a result.  Since | | 1IA ≠ for 

this solution, two new subproblems are introduced by adding the condition v  or vy .  This 

process continues for all nodes until each subproblem node is fathomed.  When all the 

nodes are fathomed, the best feasible solution encountered is declared optimal.  

Because of limited time for this study, we restrict the enumeration tree to a depth of 

one (Level 1).  So, for 1 2{ , , }IA k k= … , LB is computed as: 

1 1 2
min max ( , | 0), max ( , | 1, 0),{ }k k kLB z R x z R x x

λ λ
λ λ= = = = … .   

If the LB comes from a node at which | |IA R= , IA  is the optimal solution to MXFI(R).  

This is true because all the other nodes are fathomed by bounding. 

 We find feasible solutions for each branch created as follows:  If | |IA R> , we 

“uninterdict” arcs Ik A∈ , in order of increasing capacity, until | |IA R= .  If | |IA R< , we 

interdict arcs { \ }C Ik A A∈ , in order of decreasing capacity, until | |IA R= .  The feasible 

solution with the lowest UB becomes the best feasible solution. 

If there is more than one missing value of R, we apply this procedure sequentially 

as follows ( A+  denotes the set of arcs to be included):     

my

mnz

{ , , }m n r  

m  mn

{ , }v y  

v  vy  
{ , }m y

mnz
{ , , }m n z

(Level 0) 

(Level 1) 

(Level 2) 
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Procedure Branch( R′ , R, λ , ( )R
IA ′ , UB(r)) 

Input:  Network G= (N, A), source node s, sink node t, 
  R  current R-value correctly solved, 
  R′  previous R-value correctly solved (R′ > R + 1), 

λ   value of parameter such as *
1Rλ λ ε+= − , 

 ( )R
IA ′     interdiction set that corresponds to ˆ( )R′x , 

 UB(R)    feasible objective value for ˆ ( )Rx . 
 

Output:  ˆ ( )Rx   feasible (possibly optimal) solution for MXFI(R), 
 ( )R

IA    interdiction set that corresponds to ˆ ( )Rx , 
 LB(R)   possibly improved lower bound on optimal objective value z(R), 
  ( )UB R  possibly improved feasible objective value for ˆ ( )Rx , 
 absGap(R) for problematic R: absolute optimality gap UB(R) − LB(R), 
 relGap(R) for problematic R: relative optimality gap 100×absGap(R)/LB(R). 

 

{ 

for (r = R′  – 1 to R + 1) {      /* Solve for all missing values of R */ 

   min{ , }k k R ku u rλ ′′ ←  for all Ak ∈ ;  /* adjust arc capacities */ 

 ( )LB r ←∞ ; 

 A+ ← Ø;  /* This will be the set of arcs forced into the solution */ 

 for (a = 1 to r + 1) {     /* Include and exclude the arcs in AI(r) */ 

  Let k be the ath arc in AI( r ); 

  If ( k ∉ A+ ) {  /* if k is not already forced in */ 

 ku′ ← ku ;  /* forces arc k out of the cut, i.e., sets ˆ 0kx = */ 

} 

  (AC, f ) ← maxFlow (G, s, t, ′u ); 

   ˆ
IA  ← {k ∈ AC | ku′ =  λ };  

  ˆ
I IA A A+← ∪ ; 

  ˆ ˆ1 ; 0 \ ;k I k Ix k A x k A A← ∀ ∈ ← ∀ ∈  

  ˆ| |local I RUB f A λ ′← − ; 



 30

  /* Find a feasible solution */ 

  if ( | |IA r> ) { 

   for ( | |IA  down to r ) { 

     min arg min
I

kk A
k u

∈
← ; 

     
minlocal local kUB UB u← + ; 

     min{ }I IA A k← − ; 

     ˆ 0kx ← ; 

    } 

   } 

  /* Find a feasible solution */ 

  if ( | |IA r< ) { 

    for ( r down to | |IA ) { 

     max { / }
arg max

C I
kk A A

k u
∈

← ; 

     
maxlocal local kUB UB u← − ; 

     max{ }I IA A k← + ; 

     ˆ 1kx ← ; 

    } 

   } 

   ( 1)local RLB f r aλ ′= − − + ; 

   ( ) min{ ( ), }localLB r LB r LB=  

   ( ) min{ ( ), }localUB r UB r UB=  

    0;ku′ =         /* Set 1kx =   in the following subproblems */ 

{ };A A k+ +← ∪  

 } 

absGap ( )r  ← UB ( )r  − LB ( )r ; 

 relGap ( )r   ← 100×absGap ( )r /LB ( )r ; 

     print (“ For problematic R  = ”, r, “the approximate soln. to MXFI(R) is: ”); 
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    print ( x̂ , IA ,UB ( )r , LB ( )r , absGap ( )r , relGap ( )r ); 
} 

} 

In this procedure, we force an arc out of a solution by taking its capacity back to its 

original level, k Ru λ ′> .  This ensures that it will never be seen as interdicted since ˆ
IA  ≡ { k 

∈ AC | ku′  = Rλ ′}. “Forcing in” is accomplished by setting 0ku′ = , which means that arc k is 

destroyed and cannot be used. 

Although it is not shown in the pseudo-code for simplicity, if | |IA r≠ , we keep 

solving max-flow problems for kuλ ∈  to find | ( ) |IA rλ = .  If it doesn’t exist, then we 

find minλ  and maxλ  such that min max| ( ) | | ( ) |I IA r Aλ λ< < .  After finding these values, we 

compute localLB  the way it is computed in ProblematicR1( ): 

max max min minmax{( ( ) ( 1)), ( ( ) ( 1))}localLB f r a f r aλ λ λ λ= − − + − − + . 

If we find LB UB= , then MXFI is solved exactly for that value of R.  Otherwise, we 

may obtain an improved LB and/or UB, which decreases the optimality gap. 
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IV. COMPUTATIONAL RESULTS 

In this chapter, we describe the design of test problems, and provide computational 

results for our Lagrangian-based procedures  to solve MXFI. 

A. TEST NETWORK DESIGN 

We use grid networks to test our procedures.  “NET a b× ” denotes such a network, 

where a is the number of nodes on the horizontal axis and b is the number of nodes on the 

vertical axis.  The number of nodes in a grid network is | | 2N ab= + , and the number of 

arcs is | | (5 4) 5 6A a b b= − − + .  A representation of a small network is given in Figure 6: 

 

 

 

 

 

 

 

 

Figure 6.   NET 3 3× .  Arc capacities ku  and resources kr  are not shown in this network.  The source 
node and sink node are numbered 1 and 2, respectively. 

 

As shown in Figure 6, all horizontal arcs lie in the direction of “west to east,” and 

diagonal arcs are oriented in the southeast and northeast directions.  There are also vertical 

arcs, north-pointing and south-pointing, between adjacent nodes in a column of nodes; 

although these are omitted in the first and last columns, where they would be superfluous 

for maximizing flow.  Arcs going out of the source node and going into the sink node have 

infinite capacity and cannot be interdicted.  (In fact, uninterdictable arcs have 999kr = , 

1 

3 

4 

5 8

7

6 9

10

11

2 
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which effectively makes them uninterdictable.)    All the other arcs are interdictable. Finite 

arc capacities ku  are drawn from a discrete uniform distribution with range [1,50]. 

We use the network generator written in C by Derbes (1997) and modify it for 

different networks.  The network files generated by this program provide the following 

information about the structure of the network: number of nodes, number of arcs, source 

and sink nodes.  Also, each arc k receives a capacity ku , cost of repair kc , resource needed 

to interdict kr , and “reparability” kp .  However, we use only ku  and kr  in our tests. 

B. RESULTS 

We use six different grid networks for testing.  The smallest one, NET 5 5× , has 27 

nodes and 86 arcs.  The largest one, NET 20 20× , has 402 nodes and 1826 arcs.  All tests 

are performed on a 533 MHz Pentium III personal computer with 192 MB of RAM and 

running the Microsoft Windows XP Professional operating system.  All programs are 

written in the Java 1.3 programming language.  

We use three different methods to test the effectiveness of our Lagrangian-based 

procedures.  Each method uses Algorithm A with a different procedure or procedures.  

Procedure ProblematicR1() is the heuristic that Bingol (2001) uses to find a feasible 

solution, and a lower bound on *( , )Rz Rλ .  We use ProblematicR2() to find the best 

Lagrangian multipliers.  The procedure Branch() applies the restricted branch-and-bound 

technique introduced in Chapter III.  Method 1 uses ProblematicR1() integrated into 

Algorithm A; this is the technique Bingol (2001) analyzes.  In particular, every time 

Algorithm A runs into a contiguous set of problematic R-values, ProblematicR1() is called  

to find UB and LB for each.  Method 2 works the same way, but ProblematicR2() is 

invoked to find *
Rλ  for problematic R-values before parameters are passed on to 

ProblematicR1() which is, in this case, only used to find feasible solution.  Furthermore, 

the indicated call to Branch() inside of ProblematicR2() is not made.  Method 3 invokes 

procedure ProblematicR2() exactly as stated in the text, i.e., with a call to Branch() if a 

positive gap remains. 
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Since we are really only concerned with problematic R-values, the tables only 

present: the problematic values R, total run-times, upper bounds ( )z R , lower bounds 

( , )z Rλ , absolute gaps “absGap,” and relative gaps “relGap.”  Tables also include the 

uninterdicted maximum flow value *f . 

Table 1 shows results for Method 1.  Although all absolute gaps are small, relative 

gaps can be as large as 25.0% when the divisor ( , )z Rλ  is small.  Each network that we 

have tested has yielded one or more problematic values.  Run-times are small, the largest 

one being 31.5 cpu seconds. 

Table 2 exhibits results for Method 2 using the same networks.  Since the best 

Lagrangian mulitiplier is not necessarily an integer, *( , )Rz Rλ  might have fractional values. 

“absGap” and “relGap”  are the results computed with these fractional values. However, 

optimal objective values must be integral, so it makes sense to round *( , )Rz Rλ  up to the 

nearest integer.  Thus, “ absGap   ” and “ relGap   ” denote absolute and relative gaps 

computed after this rounding.  Of 36 problematic R-values found with Method 1, Method 2 

solves 16 exactly.  The largest remaining relative gap is 14.3% for 51R =  in NET 20 20× .  

Run-times increase only slightly for the networks that have a few problematic R-values.   If 

ProblematicR2() is invoked many times, the increase is about 25%.   

Table 3 presents the results of Method 3 which invokes procedure Branch().  We 

only pass on to this procedure the problematic R-values remaining after Method 2.  With 

this method, the number of remaining problematic R-values values goes down to four for 

NET 20 20× .  The largest relative gap drops to 7.1%, since a better feasible solution is 

found by Branch().  There can be, unfortunately, a drastic increase in run-time; for 

example, the run time increases from 31.5 seconds to 4013.7 seconds for NET 20 20× . 

To explore the effectiveness of these methods further, we use NET 8 15× with 

restricted capacities.  There are four types of restricted capacities, denoted 16[1,2], 8[1,4], 

4[1,8], 2[1,16]:  The notation “ [1, ]p q ” indicates that the random capacities are drawn 

uniformly from the set { , 2 , ,p p qp… }.  Bingol (2001) finds problem instances like these, 

with few distinct capacities, to be particularly difficult.  That is, they tend to yield large 
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optimality gaps.  We apply the same three methods as before:  Table 4 includes only 

problematic R-values with relative gaps higher than 5% remaining after Method 1.  

We start with a total of 16 problematic values from Method 1. The largest relative 

gap from Method 1 is 20%.  By using Method 2, the number of problematic R-values goes 

down to eight, with the largest gap being 6.1%.  Four of these problematic values are 

solved exactly by Method 3.  However, there is no improvement in the relative gaps of the 

remaining four. 
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G  = (N, A ) Run Time 
(cpu sec.)

Problematic 
R -Values

6 55 53 2 3.8%
2 159 152 7 4.6%

17 18 17 1 5.9%
16 29 27 2 7.4%
15 39 37 2 5.4%
14 48 47 1 2.1%

6 202 200 2 1.0%
5 228 227 1 0.4%

NET 8   12 690 [1,34] 1.0 15 189 188 1 0.5%
40 5 4 1 25.0%
39 7 6 1 16.7%
34 27 26 1 3.8%
24 146 145 1 0.7%
23 165 162 3 1.9%
22 181 180 1 0.6%
17 279 278 1 0.4%

6 590 588 2 0.3%
38 11 10 1 10.0%
10 431 430 1 0.2%

9 463 462 1 0.2%
3 686 684 2 0.3%

53 8 7 1 14.3%
51 16 14 2 14.3%
50 19 18 1 5.6%
41 83 80 3 3.8%
40 93 89 4 4.5%
39 101 98 3 3.1%
38 110 108 2 1.9%
37 119 118 1 0.8%
32 175 174 1 0.6%
17 508 507 1 0.2%
16 542 541 1 0.2%
15 576 575 1 0.2%
14 611 609 2 0.3%
11 712 711 1 0.1%

7 859 858 1 0.1%

31.5NET 20   20 1173 [1,58]

[1,43] 7.5

NET 8   15 841 [1,43] 1.9

NET 15   15 878

NET 8   8 416 [1,22] 0.4

NET 5   5 234 [1,13] 0.1

),( Rz λ*f

×

×

×

×

×

×

R
1absGap 1relGap( )z R

 

Table 1.   Test Results for Method 1.  This is essentially Bingol’s procedure (Bingol 2001) which uses 

Algorithm A with ProblematicR1(), but not ProblematicR2() or Branch().  f ∗ shows 
maximum flow without interdiction.  The column labeled “R” gives the range of 
interdiction resource levels tested; he maximum flow goes to 0 when R equals the second of 
the two numbers.  Run times cover the whole procedure, but only problematic R-values 
remaining after the procedure is run are shown.  ( )z R is the upper bound obtained from the 
best solution with ProblematicR1() and ( , )z Rλ is the largest value of Lagrangian function 

obtained from MXFI-LRD.  ( , )z Rλ  is always integer since kuλ =  for k A∈ . 

“ 1absGap ” is ( ) ( , )z R z Rλ−  and “ 1relGap ” is 1100 absGap / ( , )z Rλ× . 
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G  = (N, A ) Run Time 
(cpu sec.)

Problematic 
R -Values absGap relGap

6 55 53.5 1.5 2.8% 54 1 1.9% 3.8%
2 159 152.5 6.5 4.3% 153 6 3.9% 4.6%

17 18 17.2 0.8 4.7% 18 - - 5.9%
16 29 27.4 1.6 5.8% 28 1 3.6% 7.4%
15 39 37.6 1.4 3.7% 38 1 2.6% 5.4%
14 48 47.8 0.2 0.4% 48 - - 2.1%
6 202 200 2.0 1.0% 200 2 1.0% 1.0%
5 228 227 1.0 0.4% 227 1 0.4% 0.4%

NET 8   12 690 [1,34] 1.0 15 189 188.5 0.5 0.3% 189 - - 0.5%
40 5 4.3 0.7 16.3% 5 - - 25.0%
39 7 6.7 0.3 4.5% 7 - - 16.7%
34 27 26.5 0.5 1.9% 27 - - 3.8%
24 146 145.5 0.5 0.3% 146 - - 0.7%
23 165 163 2.0 1.2% 163 2 1.2% 1.9%
22 181 180.5 0.5 0.3% 181 - - 0.6%
17 279 278.5 0.5 0.2% 279 - - 0.4%
6 590 588.5 1.5 0.3% 589 1 0.2% 0.3%

38 11 10.5 0.5 4.8% 11 - - 10.0%
10 431 430.3 0.7 0.2% 431 - - 0.2%
9 463 462.7 0.3 0.1% 463 - - 0.2%
3 686 684.5 1.5 0.2% 685 1 0.1% 0.3%

53 7 7 - - 7 - - 14.3%
51 16 14 2.0 14.3% 14 2 14.3% 14.3%
50 19 18 1.0 5.6% 18 1 5.6% 5.6%
41 83 80.5 2.5 3.1% 81 2 2.5% 3.8%
40 93 90 3.0 3.3% 90 3 3.3% 4.5%
39 101 99.5 1.5 1.5% 100 1 1.0% 3.1%
38 110 109 1.0 0.9% 109 1 0.9% 1.9%
37 119 118.5 0.5 0.4% 119 - - 0.8%
32 175 174.5 0.5 0.3% 175 - - 0.6%
17 508 507.8 0.2 0.0% 508 - - 0.2%
16 542 541.5 0.5 0.1% 542 - - 0.2%
15 576 575.3 0.7 0.1% 576 - - 0.2%
14 609 609 - - 609 - - 0.3%
11 712 711.5 0.5 0.1% 712 - - 0.1%
7 859 858 1.0 0.1% 858 1 0.1% 0.1%

NET 5   5 234 [1,13] 0.1

NET 8   8 416 [1,22] 0.7

NET 8   15 841 [1,43] 2.3

NET 15   15 878 [1,43] 10.3

NET 20   20 1173 [1,58] 39.3

*( , )Rz Rλ *( , )Rz Rλ  
*f

×

×

×

×

×

×

2absGapR 2relGap 1relGap( )z R

Table 2.   Test Results for Method 2.  This method uses Algorithm A and invokes ProblematicR2() 
and ProblematicR1().  ProblematicR2() finds the best Lagrangian multipliers *

Rλ for 
problematic R-values, which are then passed on to ProblematicR1() to find feasible 

solutions.  Since z(R) is integer, *( , )
R

z Rλ 
   is a valid lower bound on z(R). “ 2absGap ” is 

*( ) ( , )Rz R z Rλ−  
   and “ 2relGap ” is *

2100 absGap / ( , )Rz Rλ×  
  .  “ absGap ” is 

*( ) ( , )Rz R z Rλ−  and “ relGap ” is *100 absGap / ( , )Rz Rλ× .  “-“ indicates that MXFI is 
solved optimally.  Only two problematic R-values, R = 53 and R = 14 for NET 20 20× , are 

solved exactly before rounding up *( , )Rz Rλ but, overall, more than 50% of the problematic 

R-values are solved with rounding.  1relGap  is shown for comparison. 
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G  = (N, A ) Run Time 
(cpu sec.)

Problematic 
R -Values

6 55 55 55 - - 3.8% 1.9%
2 159 158 158 1 0.6% 4.6% 3.9%

17 18 18 18 - - 5.9% -
16 29 29 29 - - 7.4% 3.6%
15 39 39 39 - - 5.4% 2.6%
14 48 48 48 - - 2.1% -

6 202 202 202 - - 1.0% 1.0%

5 228 228 228 - - 0.4% 0.4%
NET 8   12 690 [1,34] 4.4 15 189 189 189 - - 0.5% -

40 5 4.3 5 - - 25.0% -
39 7 6.7 7 - - 16.7% -
34 27 27 27 - - 3.8% -
24 146 146 146 - - 0.7% -
23 165 165 165 - - 1.9% 1.2%
22 181 181 181 - - 0.6% -
17 279 279 279 - - 0.4% -

6 590 590 590 - - 0.3% 0.2%
38 11 11 11 - - 10.0% -
10 431 431 431 - - 0.2% -

9 463 463 463 - - 0.2% -
3 686 686 686 - - 0.3% 0.1%

51 15 14 14 1 7.1% 14.3% 14.3%
50 19 18 18 1 5.6% 5.6% 5.6%
41 83 83 83 - - 3.8% 2.5%
40 93 92 92 1 1.1% 4.5% 3.3%
39 101 101 101 - - 3.1% 1.0%
38 110 110 110 - - 1.9% 0.9%
37 119 119 119 - - 0.8% -
32 175 174.5 175 - - 0.6% -
17 508 508 508 - - 0.2% -
16 542 542 542 - - 0.2% -
15 576 576 576 - - 0.2% -
11 712 712 712 - - 0.1% -

7 859 859 859 - - 0.1% 0.1%

NET 5   5 234 [1,13] 0.2

25.2

NET 8   8 416 [1,22] 7.0

NET 8   15 841 [1,43]

NET 15   15 878 [1,43] 96.0

NET 20   20 1173 [1,58] 4013.7

L B

×

×

×

×

×

*f L B  

×

3absGap 3relGap 1relGap 2relGapR ( )z R

 

Table 3.   Test Results from Method 3.  Method 3 is essentially Method 2 except that Branch() is 
invoked for problematic R-values that Method 2 cannot resolve.  minLB =

1 1 2
{max ( , | 0), max ( , | 1, 0), }k k kz R x z R x x

λ λ
λ λ= = = … .  “ 3absGap ” is ( )z LBλ −    and 

“ 3relGap ” is 3100 absGap / LB  × .  Absolute and relative gaps computed with fractional 
values are not shown in this table.  12 problematic R-values out of the 16 remaining after 
Method 2 are solved exactly by Method 3.  UB for R = 51 of NET 20 20×  drops from 16 
to 15, because a better feasible solution is found by Branch().  1relGap  and 2relGap are 
also shown in the table for comparison.   
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G =(N , A ) Problematic 
R -Values

24 320 304 5.3% 304 304 - - - -
23 352 320 10.0% 320 320 - - - -
22 384 336 14.3% 336 336 - - - -
21 400 352 13.6% 352 352 - - - -
20 416 368 13.0% 368 368 - - - -
19 432 384 12.5% 400 394 1.5% 400 394 1.5%
18 448 400 12.0% 432 420 2.9% 432 420 2.9%
17 464 432 7.4% 464 446 4.0% 464 446 4.0%
31 104 96 8.3% 96 96 - - - -
30 120 104 15.4% 112 110 1.8% 112 112 -
29 128 120 6.7% 128 123 4.1% 128 123 4.1%
38 240 200 20.0% 200 200 - - - -
37 280 240 16.7% 240 240 - - - -
35 280 260 7.7% 280 264 6.1% 280 280 -
34 340 320 6.3% 340 329 3.3% 340 340 -
33 400 380 5.3% 400 393 1.8% 400 400 -

16[1,2]

8[1,4]

4[1,8]

2[1,16]

2relGap 3relGap1relGap ( )z R ( )z R( )z R L B  
*( , )Rz Rλ  ),( Rz λ

 

 

 

 
 
 

Table 4.   Comparative Test Results for NET 8 15× with Restricted Arc Capacities.  “Methods” are defined in the text.  Arc capacities denoted [1, ]p q

are drawn from the set { , 2 , ,p p qp… }.  “ 1relGap , 2relGap , and 3relGap ” are the relative gaps obtained from Method 1, 2 and 3, respectively. 
Only R-values with relative gaps remaining greater than 5% after Method 1 are shown in this table.  50% of problematic R-values are solved 
exactly by Method 2, and 50% of those remaining are then solved by Method 3.  Notice that UB for R = 30 of the network with arc capacities 
8[1,4] has dropped from 120 to 112, because R=31 is solved exactly by Method 2, and this makes it possible to find a better feasible solution 
for R = 30.   

Method 3Method 1 Method 2
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V. CONCLUSIONS AND FURTHER RESEARCH 

A. SUMMARY 

 The maximum-flow network-interdiction problem (MXFI) arises when an 

“interdictor” uses limited interdiction resources to restrict an adversary’s use of a network.  

Conceptually, the interdictor destroys arcs to minimize the maximum flow that the 

adversary, or “network user,” can achieve through the network. In this study, we have 

explored new Lagrangian-relaxation techniques for solving MXFI for all values of 

interdiction resource R in a specified range.  We assume that one unit of resource is 

required to interdict an arc, so we only deal with integer values of R. 

 MXFI can be solved by means of integer programming, but this approach is slow.  

Bingol (2001) modifies the Lagrangian-relaxation technique developed by Derbes (1997) 

to solve MXFI for all R ∈ [1, min| |A ], where  minA  denotes a minimum cardinality cut 

consisting of only interdictable arcs.  The Lagrangian-relaxation technique solves a 

sequence of max-flow problems with related arc capacities, and is therefore quite efficient.   

 Let ( )z R  denote the optimal objective value to MXFI for a given R, and let 

( , )z Rλ  denote the Lagrangian lower bound on ( )z R  given Lagrangian multiplier λ .  

Essentially, Bingol (2001) evaluates ( , )z Rλ  simultaneously for all R, but only for values 

of λ  equal to perturbed arc capacities.  We follow this procedure—the range of λ  is 

correct—but, when ( , ) ( )z R z Rλ <  for *
Rλ = argmax ( , )z R

λ
λ , where ( )z R  is the objective-

function value for the best feasible solution found.  This is accomplished with a search 

technique based on the slope of ( , )z Rλ  with respect to λ .  For most test problems, we can 

decrease the optimality gap for “problematic R-values” by approximately 50%.  A value of 

R is “problematic” if Bingol’s procedure leaves ( , ) ( )z R z Rλ < .  Although this approach 

focuses on tightening lower bounds, it is also finds better feasible solutions on occasion, 

and sometimes proves optimality of the best solution.  However, some large optimality 

gaps may remain. 
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We tackle the remaining problematic R-values with a modified branch-and-bound 

procedure.  This procedure uses a partition based on the best interdiction set found, 

1 2{ , , , }I LA k k k= … .  In particular, we solve 
1 2

max ( , | 1, 0), ,k kz R x x
λ

λ = = …  

1 2
max ( , | 1, 1,k kz R x x

λ
λ = = ,…  

1
1, 0)

L Lk kx x
−
= = .  ( max ( , | 1 )k Iz R x k A

λ
λ = ∀ ∈  is already 

solved.)  The minimum lower bound from these problems is a lower bound on the optimal 

solution.  This partitioning scheme can be applied recursively to solve MXFI exactly for a 

given R, but we have only implemented a single application of the partition.  That is, we 

have limited the enumeration tree of this method to one level below the root.  Using this 

technique, we may find a lower bound which equals the upper bound obtained from the 

best feasible solution.  In this case, MXFI is solved.  In our tests, we have solved 

approximately 70% of the problematic R-values that remain after applying the first 

technique.  But, this procedure runs slowly because of the need to solve many max-flow 

problems, so it is best used only when large optimality gaps are encountered.   

Having used these two techniques together, we have been able to solve MXFI either 

exactly or with small optimality gaps for most of the problematic R-values encountered.  

But, we still cannot guarantee an exact solution or a small optimality gap. 

B. FURTHER RESEARCH 

In this thesis, we have used a restricted modified branch-and-bound procedure that 

explores the enumeration tree only one level below the root.  That is why some problematic 

R-values still remain.  A fully recursive implementation of the branch-and-bound algorithm 

will solve MXFI exactly, at least in theory.  Even the restricted branch-and-bound 

procedure becomes slow because of the need to solve many max-flow problems.  Thus, a 

fully recursive procedure based on this methodology would be even slower.  To make such 

a procedure reasonably efficient, a faster maximum-flow algorithm should be used and 

techniques for reoptimizing related maximum-flow problems should be explored.    

For the sake of simplicity, we have assumed that that 1kr =  for all interdictable arcs 

k.  That is, one unit of resource is needed to interdict any interdictable arc.  Allowing  
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1kr >  (but still integer) will make the problem harder.  In this case, a complete branch-and-

bound procedure would become more important to possess. 

We have assumed that grid networks are adequate representatives for real-world 

networks, so we have performed our tests on these networks.  However, we are uncertain 

how well these procedures will perform on actual networks.  Obviously, future research 

should apply these techniques to more realistic networks. 
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